Data Generation Approaches to Detect Abnormal Conditions in Water Distribution Systems

Author:

Jun Sanghoon,Choi Young Hwan

Abstract

The water distribution system (WDS) abnormal condition detection is a technology that identifies WDS failure (e.g., pipe bursts) based on abnormal hydraulic behaviors. Its performance in detecting abnormal conditions is impacted by the quantity and quality of the collected hydraulic data. The hydraulic data for normal operation conditions could be provided using the measurements collected by smart meters and various other sensors. However, the abnormal condition hydraulic data cannot be obtained except by means of field tests and irregular system failures. Therefore, this study proposes three data generation approaches that utilize the following: (1) a hydraulic simulation model; (2) real-field WDS abnormal condition data (e.g., field tests, past failure data); and (3) both (1) and (2), simultaneously. Subsequently, the J-town network was applied in order to verify the proposed approaches. It was found that these approaches can generate synthetic failure data when considering the characteristics of actual events of failure and various other scenarios.

Funder

National Research Foundation of Korea

Publisher

Korean Society of Hazard Mitigation

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3