Finite Element Analysis of Structural Behavior of Sliding-Type Blast-Resistant Doors Based on Blast Loading Conditions

Author:

Shin Hyunseop,Kim Sungwook,Moon Jaeheum,Kim Wonwoo

Abstract

In current specifications, it is assumed that the structural performance is the same if the same deflection occurs, regardless of the structural characteristics or explosive conditions. However, depending on the structural characteristics and explosion conditions, structural responses may differ. Therefore, flexural deflection and shear need to be considered. In this study, the differences in the structural behaviors of steel-concrete sliding-type blast doors in the impulsive, dynamic, and quasi-static regions were analyzed using the finite element method. The results showed that in the impulsive region and under significant impact forces, shear failure occurred at the initial behavioral step, and the door was more vulnerable to shear than in the dynamic and quasi-static regions. Furthermore, in the impulsive region, a relatively large deformation occurred in the wheel installed on the lower part of the door, affecting functionality, such as opening and closing. Because combined flexural-shear and direct shear failures cause more damage than flexural failure, they must be considered during the design process, and further studies are required to develop a generalized evaluation method and design criteria to reflect the shear effect.

Funder

Ministry of Land, Infrastructure and Transport

Publisher

Korean Society of Hazard Mitigation

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3