Analytical Study on the Prediction of Fire Evacuation Time in Large Complex Buildings Using the Ensemble Learning Technique

Author:

Lee DooHee,Kim HakKyung,Kim Jeon Soo,Hwang Hyun Soo,Choi DooChan

Abstract

With the recent increase in the risk of fire in buildings, the number of casualties that occur in the event of a fire have increased. This emphasizes the importance of performance-based design. However, simulating a performance-based design requires a lot of manpower and time, and re-simulation with minor changes is a difficult task. Therefore, in this study, we attempt to develop a prediction model that can easily predict the ASET for each fire distance as a fire factor and spatial factor by applying ensemble learning. The prediction model developed using machine learning based on FDS data showed a high coefficient of determination of 0.91, and we believe that ASET for each distance can be derived in real time by applying this prediction model.

Funder

Ministry of Land, Infrastructure and Transport

Publisher

Korean Society of Hazard Mitigation

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3