Connectivity-based Seismic Response Analysis of Water Transmission Networks

Author:

Yoon Sungsik

Abstract

Recent frequent earthquakes have caused serious damage to water supply structures, significantly affecting the drinking water supply of local residents. In particular, because water supply structures are extensively buried underground, prediction of their deteriorated performance against external disturbances is crucial for maintenance purpose. Therefore, this study aims to evaluate the degraded seismic performance of the water transmission network based on connectivity-based network analysis against seismic conditions. The proposed methodology consists of i) network map reconstruction using a graph theory, ii) ground motion generation considering the uncertainty of seismic motion, and iii) connectivity verification between source and sink nodes. To demonstrate the proposed methodology, the network topology was reconstructed by adopting the water transmission network located in A-city, and the seismic performance of the target network was evaluated considering the epicenter of the historical earthquakes. As a result of numerical analysis, the seismic response of the water transmission network showed the highest network connectivity when the water was supplied from node 62, and water was stably secured at node 107 under different earthquake magnitudes.

Funder

Ministry of Education

National Research Foundation of Korea

Publisher

Korean Society of Hazard Mitigation

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3