1. 1) Johnson, A. and Montgomery, J.: Overview of Terrain Relative Navigation Approaches for Precise Lunar Landing, 2008 IEEE Aerospace Conference, Montana, USA, pp. 1–10, 2008.
2. 2) Okada, S., Nakahama, Y., Moribe, M., Kamata, H., Kariya, K.,Takadama, K., et al.: Detection of the Position And the Size of Craters Using Principal Component Analysis and Its Evaluations, Aerosp. Tech. Jpn, 17 (2018), pp. 61–67 (in Japanese).
3. 3) Kariya, K., Ishida, T., Sawai, S., Kinoshita, T., Kajihara, K., Iwasa, O., et al.: Position Estimation Using Crater-Based Linear Features for Pinpoint Lunar Landing, Aerosp. Tech. Jpn., 17 (2018), pp. 79–87 (in Japanese).
4. 4) Lentaris, G., Maragos, K., Stratakos, I., Papadopoulos, L., Papanikolaou, O., Soudris, D., et al.: High-Performance Embedded Comput ing in Space: Evaluation of Platforms for Vision-Based Navigation,J. Aerosp. Inform. Syst., 15 (2018), pp. 178–192.
5. 5) Benjamin, B. V., Gao, P., McQuinn, E., Choudhary, S., Chandrasekaran, A. R., Bussat, J.-M., et al.: Neurogrid: A Mixed-Analog Digital Multichip System for Large-Scale Neural Simulations, Proc. IEEE, 102 (2014), pp. 699–716.