Abstract
The formal theory of division in arithmetical algebras reconstructs fractions as syntactic objects called fracterms. Basic to calculation, is the simplification of fracterms to fracterms with one division operator, a process called fracterm attening. We consider the equational axioms of a calculus for calculating with fracterms to determine what is necessary and sufficient for the fracterm calculus to allow fracterm flattening. For computation, arithmetical algebras require operators to be total for which there are several semantical methods. It is shown under what constraints up to isomorphism, the unique total and minimal enlargement of a field Q(\div) of rational numbers equipped with a partial division operator \div has fracterm attening.
Publisher
Scientific Annals of Computer Science
Subject
Applied Mathematics,General Computer Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献