Affiliation:
1. EGE ÜNİVERSİTESİ, GÜNEŞ ENERJİSİ ENSTİTÜSÜ
Abstract
In the present study, the effects of chain length variation of Poly(3-hexyl) thiophene polymer, which is one of the appropriate alternatives of Spiro-O-MeTAD used as a hole transfer layer (HTL) in perovskite-based solar cells (PSC), on thin-film morphology and device performance were investigated. Furthermore, nanowires of long (UZ) and short-chain (KZ) P3HT were obtained in the solution phase and then comparative photovoltaic performance analyses were carried out by fabricating PSC devices. As a result, it was determined that the morphological changes resulting from the polymer chain length directly affect the charge transfer between the active layer and HTL. KZ-P3HT presented better performance than both standard P3HT (5.99) and UZ-P3HT (2.68) polymers with a power conversion efficiency (PCE) of 7.74%. It was demonstrated that the main reason for this is that the fringed structure, detected by AFM images, increases the contact ratio at the perovskite/HTM interface. In addition, thanks to the morphological improvements in nano-wire studies, it was observed that the photovoltaic performance of the PSC device containing UZ-P3HT increased by 5.51%. Contrary to UZ-P3HT, it was determined that after the conversion of KZ-P3HT to the nanowire, the fringed structure on the surface disappeared and therefore the efficiency decreased to 5.81%.
Publisher
Celal Bayar University Journal of Science
Reference29 articles.
1. “Best Research-Cell Efficiency Chart | Photovoltaic Research | NREL.” https://www.nrel.gov/pv/cell-efficiency.html (accessed Dec.. 3, 2021).
2. M. Saliba et al., 2016, “Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency,” Energy and Environmental Science, 9(6), 1989–1997.
3. M. Liu, M. B. Johnston, and H. J. Snaith, 2013, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature, 501(7467): 395–398.
4. O. Almora et al., 2021, “Device Performance of Emerging Photovoltaic Materials (Version 1),” Advanced Energy Materials, 11(11).
5. S. S. Ashrafi et al., 2020, “Characterization and Fabrication of Pb-Based Perovskites Solar Cells under Atmospheric Condition and Stability Enhancement,” Advances in Materials Physics and Chemistry, 10(11): 282–296.