Microwave-Assisted Fabrication of Pd, Co and Ni Nanoparticles Modified-SiO2; as Catalysts in the Reduction Reaction of Organic Pollutants
Author:
ÇAĞLAR YAVUZ Sevtap1ORCID, YAVUZ Emre1ORCID, DAYAN Serkan2ORCID
Affiliation:
1. ERZINCAN BINALI YILDIRIM UNIVERSITY 2. ERCIYES UNIVERSITY
Abstract
Nanomaterials have been used in catalytic degradation of organic pollutants also act as catalysts in for many years. Due to excellent catalytic performances of metal-based nanoparticles, these materials have been used extensively in various hybrid catalyst synthesis. The main subject of this study, heterogeneous catalysis is a low cost and multi-purpose process for many pollutants. Catalytic degradation of organic pollutants such as; 2-Nitrophenol, Quinolin Yellow and Rhodamine B was investigated by using Ni, Co, Pd nanoparticles modified SiO2 based nanomaterials. The co-doping effect on the prepared nanomaterials has been investigated with different characterization methods in terms of structural and morphological features: scanning electron microscopy, UV/Vis absorption spectroscopy, energy-dispersive X-ray spectroscopy and foruier-transform infrared spectroscopy. The highest catalytic reduction efficiencies (97.6% and 97.5%) for 2-nitrophenol and Rhodamine B was obtained by Pd-PEG-AP@SiO2 respectively. The synthesized Co-PEG-AP@SiO2 illustrated higher catalytic reduction efficiency for Quinolin Yellow (70.1%) at the end of 60s. The prepared M-PEG-AP@SiO2 nanomaterial (M: Pd,Co,Ni) can be able to utilized degradation of organic contaminants effectively.
Publisher
Celal Bayar University Journal of Science
Reference31 articles.
1. [1]. Da’na, E., Taha, A., El-Aassar, M. R. 2023. Catalytic reduction of p-nitrophenol on MnO2/zeolite-13X prepared with lawsonia inermis extract as a stabilizing and capping agent. Nanomaterials, 13(4): 785. 2. [2]. Kumar, R., Barakat, M., Daza, Y., Woodcock, H., Kuhn, J. 2013. EDTA functionalized silica for removal of Cu (II), Zn (II) and Ni (II) from aqueous solution. Journal of Colloid and Interface Science, 408, 200–205. 3. [3]. Fu, Y., Yin, Z., Qin, L., Huang, D., Yi, H., Liu, X., Liu, S., Zhang, M., Li, B., Li, L., Wang, W., Zhou, X., Li, Y., Zeng, G., Lai, C. 2022. Recent progress of noble metals with tailored features in catalytic oxidation for organic pollutants degradation. Journal of Hazardous Materials, 422, 126950. 4. [4]. Ertl, G., Knözinger, H., Weitkamp, J. (Eds.). 1997. Weinheim: VCH. Handbook of heterogeneous catalysis. 2, 427-440. 5. [5]. Colmenares, J. C., Luque, R., Campelo, J. M., Colmenares, F., Karpiński, Z., Romero, A. A. 2009. Nanostructured photocatalysts and their applications in the photocatalytic transformation of lignocellulosic biomass: an overview. Materials, 2(4): 2228-2258.
|
|