Deep Rolling of Al6061-T6 Material and Performance Evaluation with New Type Designed WNMG Formed Rolling Tool

Author:

Adıyaman Oktay1ORCID,Aydın Feyza2ORCID

Affiliation:

1. BATMAN UNIVERSITY, VOCATIONAL SCHOOL OF ORGANIZED INDUSTRIAL SITE

2. BATMAN UNIVERSITY

Abstract

In deep rolling, ball and roller type burnishing tools are generally used. It is generally difficult to deep roll contours with curved and conical shapes with the existing rolling tools. The aim of this study is to design experiments with a roller insert that will be an alternative to deep rolling inserts being used now and that can be fixed on the present tool holders; and to investigate the usability of them including curve and conical formed workpieces with the help of this designed tool. For this purpose, a spherical insert with a radius of 1 mm in the form of WNMG was designed based on the WNMG insert model and used in deep rolling of Al6061-T6 material using different forms and parameters. 143, 330, 495 N rolling force, 0.04, 0.08, 0.12 mm/rev feed and 400, 600, 800 rpm spindle speed were selected as rolling parameters. By examining the microhardness and surface structure of deep-rolled Al6061 parts, the achievability of the results of existing tools in deep rolling was investigated. At the end of the study, it was determined that the new type of rolling tool produced results similar to the existing tools in deep rolling in terms of microhardness and surface morphology, which enabled that the workpieces with curve and conical forms could also be rolled, and that this rolling tool could be used as an alternative in deep rolling.

Funder

Batman Üniversity

Publisher

Celal Bayar University Journal of Science

Reference49 articles.

1. [1]. Wandra, R., Prakash, C., Singh, S. 2022. Experimental investigation and optimization of surface roughness of β-Phase titanium alloy by ball burnishing assisted electrical discharge cladding for implant applications. Materials Today: Proceedings; 48, 975-980, doi: 10.1016/j.matpr.2021.06.070.

2. [2]. Kinner-Becker, T., Zmich, R., Sölter, J., Meyer, D. 2021. Combined laser and deep rolling process as a means to study thermo-mechanical processes. Procedia CIRP; 102, 369-374, doi: 10.1016/j.procir.2021.09.063.

3. [3]. Prabhu, P. R., Kulkarni, S. M., Sharma, S. S. 2011. An experimental investigation on the effect of deep cold rolling parameters on surface roughness and hardness of AISI 4140 steel. World Academy of Science, Engineering and Technology; 60, 1594-1598.

4. [4]. Başak, H., Sönmez, F., 2015. In Burnishing Process, Inspectation of The Burnishing Apparaus (Ball, Roller, Twıst Roller) Effects on Surface Roughness and Surface Hardness, Journal of Polytechnic; 18(3), 125-132, doi: 10.2339/2015.18.3, 125-132.

5. [5]. Mendi, F., Takım tezgâhları teori ve hesapları, ISBN:975-06008-0-3, Ankara, 1996.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3