Adjusting for Publication Bias in JASP & R - Selection Models, PET-PEESE, and Robust Bayesian Meta-Analysis

Author:

Bartoš František,Maier Maximilian,Quintana Daniel S,Wagenmakers Eric-JanORCID

Abstract

Meta-analyses are essential for cumulative science, but their validity can be compromised by publication bias. In order to mitigate the impact of publication bias, one may apply publication bias adjustment techniques such as PET-PEESE and selection models. Implemented in JASP & R, these methods allow researchers without programming experience to conduct state-of-the-art publication bias adjusted meta-analysis. In this tutorial, we demonstrate how to conduct a publication bias adjusted meta-analysis in JASP & R and interpret the results. First, we explain two frequentist bias correction methods: PET-PEESE and selection models. Second, we introduce robust Bayesian meta-analysis (RoBMA), a Bayesian approach that simultaneously considers both PET-PEESE and selection models. We illustrate the methodology on an example data set, provide instructional video (https://bit.ly/pubbias), R-markdown script (https://osf.io/uhaew/), and discuss the interpretation of the results. Finally, we include concrete guidance on reporting the meta-analytic results in an academic article.

Publisher

Center for Open Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3