A Mega-Analysis of Personality Prediction: Robustness and Boundary Conditions

Author:

Beck Emorie D,Jackson Joshua James

Abstract

Decades of studies identify personality traits as an important predictor of life outcomes. However, previous investigations of personality-outcome associations have not taken a principled approach to covariate use or other sampling strategies to ensure the robustness of personality-outcome associations. The result is that it is unclear (1) whether personality predicts important outcomes after accounting for a range of background variables, (2) for whom and when personality predictions hold, and 3) which background variables are most important to account for. The present study examines the robustness and boundary conditions of personality prediction using the Big Five to predict 14 health, social, education/work, and societal outcomes across eight different person- and study-level moderators using individual participant data from 171,395 individuals across 10 longitudinal panel studies in a mega-analytic framework. Robustness and boundary conditions were systematically tested using two approaches: propensity score matching and specification curve analysis. Three findings emerged: First, personality traits remain a robust predictor of life outcomes. Second, the effects generalize, as there are few moderators of personality-outcome associations. Third, robustness was differential across covariate choice in nearly half of the tested models, with the inclusion or exclusion of some of these flipping the direction of association. In sum, personality is a powerful predictor of life outcomes with few moderated associations. However, researchers need to be careful in their choices of covariates. We discuss how these findings can inform personality prediction, as well as recommendations for covariate inclusion.

Publisher

Center for Open Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3