Benefits and Harms of Large Language Models in Digital Mental Health

Author:

De Choudhury Munmun1,Pendse Sachin R1,Kumar Neha

Affiliation:

1. Georgia Institute of Technology

Abstract

The past decade has been transformative for mental health research and practice. The ability to harness large repositories of data, whether from electronic health records (EHR), mobile devices, or social media, has revealed a potential for valuable insights into patient experiences, promising early, proactive interventions, as well as personalized treatment plans. Recent developments in generative artificial intelligence, particularly large language models (LLMs), show promise in leading digital mental health to uncharted territory. Patients are arriving at doctors' appointments with information sourced from chatbots, state-of-the-art LLMs are being incorporated in medical software and EHR systems, and chatbots from an ever-increasing number of startups promise to serve as AI companions, friends, and partners. This article presents contemporary perspectives on the opportunities and risks posed by LLMs in the design, development, and implementation of digital mental health tools. We adopt an ecological framework and draw on the affordances offered by LLMs to discuss four application areas---care-seeking behaviors from individuals in need of care, community care provision, institutional and medical care provision, and larger care ecologies at the societal level. We engage in a thoughtful consideration of whether and how LLM-based technologies could or should be employed for enhancing mental health. The benefits and harms our article surfaces could serve to help shape future research, advocacy, and regulatory efforts focused on creating more responsible, user-friendly, equitable, and secure LLM-based tools for mental health treatment and intervention.

Publisher

Center for Open Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3