Publication bias is a ubiquitous threat to the validity of meta-analysis and the accumulation of scientific evidence. In order to estimate and counteract the impact of publication bias, multiple methods have been developed; however, recent simulation studies have shown the methods’ performance to depend on the true data generating process – no method consistently outperforms the others across a wide range of conditions. To avoid the condition-dependent, all-or-none choice between competing methods we extend robust Bayesian meta-analysis and model-average across two prominent approaches of adjusting for publication bias: (1) selection models of p-values and (2) models of the relationship between effect sizes and their standard errors. The resulting estimator weights the models with the support they receive from the existing research record. Applications, simulations, and comparisons to preregistered, multi-lab replications demonstrate the benefits of Bayesian model-averaging of competing publication bias adjustment methods.