No Need to Choose: Robust Bayesian Meta-Analysis with Competing Publication Bias Adjustment Methods

Author:

Bartoš František,Maier Maximilian,Wagenmakers Eric-JanORCID,Doucouliagos Hristos,Stanley T D

Abstract

Publication bias is a ubiquitous threat to the validity of meta-analysis and the accumulation of scientific evidence. In order to estimate and counteract the impact of publication bias, multiple methods have been developed; however, recent simulation studies have shown the methods’ performance to depend on the true data generating process – no method consistently outperforms the others across a wide range of conditions. To avoid the condition-dependent, all-or-none choice between competing methods we extend robust Bayesian meta-analysis and model-average across two prominent approaches of adjusting for publication bias: (1) selection models of p-values and (2) models of the relationship between effect sizes and their standard errors. The resulting estimator weights the models with the support they receive from the existing research record. Applications, simulations, and comparisons to preregistered, multi-lab replications demonstrate the benefits of Bayesian model-averaging of competing publication bias adjustment methods.

Publisher

Center for Open Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3