Dispersive Liquid—Liquid Microextraction Based on Solidification of Floating Organic Drop Combined with High Performance Liquid Chromatography for Analysis of 15 Phthalates in Water

Author:

Yang Danni1,Yang Yi1,Li Yongxin2,Yin Shuo1,Chen Yaling1,Wang Jiamin1,Xiao Jiangyu1,Sun Chengjun2

Affiliation:

1. Sichuan University, West China School of Public Health, Chengdu 610041, China

2. Sichuan University, West China School of Public Health, Chengdu 610041, China; Provincial Key Laboratory for Food Safety Monitoring and Risk Assessment of Sichuan, Chengdu 610041, China

Abstract

Abstract Background: Consistent toxicological evidence indicate that phthalates can cause adverse effects on human health. The concern over phthalate pollution and exposure has been emphasized in recent years. Therefore, the sensitive, reliable, and rapid detection of phthalates in water is of great importance. Objective: In this study, dispersive liquid–liquid microextraction based on solidification of floating organic droplet (DLLME-SFO) combined with HPLC-UV detection was established and applied in the preconcentration and detection of 15 phthalates in drinking and river water samples. Methods: A mixture of acetonitrile (dispersant) and 1-dodecanol (extractant) was injected into water samples, which had been added with sodium chloride. The cloudy solution was formed by hand-shaking. After centrifugation, the sample solution was cooled in a refrigerator, and the solidified organic droplet was collected. It melted at room temperature and was injected into the HPLC system for analysis. The quantification was based on the working curves. Results: Under optimum conditions, this method showed good linearity in the range of 0.1–100 or 0.5–100 μg/L with correlation coefficients greater than 0.999. The method had the LODs ranging from 0.013 to 0.16 μg/L with the enrichment factors of 102–218. The recoveries of the method ranged from 86.8 to 119% with RSDs less than 12.6%. The interday and intraday RSDs were 6.35–13.5% and 3.00–13.7%, respectively. The established method has been successfully applied to the analysis of phthalates in drinking and river waters. Conclusions: The established method is rapid, sensitive, cost-effective, and environmentally friendly. It can be applied to the analysis of 15 phthalates in drinking and river water samples. Highlights: A method of DLLME-SFO combined with HPLC-UV detection has been established for the analysis of 15 phthalates in drinking and river water samples. The established method was rapid, sensitive, accurate, cost-effective, and environmentally friendly. The established method was successfully applied to the analysis of 15 phthalates in bottled, tap, and river water samples.

Publisher

Oxford University Press (OUP)

Subject

Pharmacology,Agronomy and Crop Science,Environmental Chemistry,Food Science,Analytical Chemistry

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3