Classification of Edible Oils Based on ATR-FTIR Spectral Information During a Long Heating Treatment

Author:

Mahboubifar Marjan1,Hemmateenejad Bahram2,Yousefinejad Saeed3

Affiliation:

1. Shiraz University of Medical Sciences, Medicinal and Natural Products Chemistry Research Center, Shiraz, Iran

2. Shiraz University of Medical Sciences, Student Research Committee, Shiraz, Iran

3. Shiraz University of Medical Sciences, School of Health, Research Center for Health Sciences, Department of Occupational Health Engineering, Shiraz, Iran

Abstract

Abstract Identification of oil type and its QC are important concerns in food control laboratories. Classifying edible oils that have not been used (i.e., unheated) with the aid of vibrational spectroscopy has previously been reported. However, the classification of used (i.e., heat-treated) oils needs special attention. The effect oflong heating times on the classification of four kinds of edible oils (canola, corn, frying, and sunflower) based on attenuated total reflectance (ATR)-FTIR spectra was surveyed. The sampling was done on the oils during a 36 h heating process (at 170°C). The ATR-FTIR spectra of the samples were collected in the range of 4000–550 cm−1. Interval extended canonical variates analysis (ECVA), as a variable selection and classification tool, was used to determine the best intervals during the heating procedure for classification. Principal component analysis discriminate analysis, partial least-squares discriminate analysis, and ECVA were performed on the selected intervals and on the total heating time. The effect of autoscaling and mean-centering, as data preprocessing methods, was also investigated. The ECVA method resulted in the best performances for classification, with a 94% cross-validated nonerror rate (one misclassification) for the heating process times of 24–27 and 33–36 h.

Publisher

Oxford University Press (OUP)

Subject

Pharmacology,Agronomy and Crop Science,Environmental Chemistry,Food Science,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3