LC/MS Method Using Cloud Point Extraction for the Determination of Permitted and Illegal Food Colors in Liquid, Semiliquid, and Solid Food Matrixes: Single-Laboratory Validation

Author:

Ates Ebru1,Mittendorf Klaus1,Senyuva Hamide2

Affiliation:

1. Thermo Fisher Scientific, Food Safety Response Center, Im Steingrund 4-6, 63303 Dreieich, Germany

2. FoodLife International, Zemin Kat No: Ara-1 Çankaya 06531 Ankara, Turkey

Abstract

Abstract A cloud point extraction method is reported using LC/MS for the determination of regulated water-soluble food colors (Allura Red, Sunset Yellow, erythrosine, and tartrazine) and banned fat-soluble synthetic azo dyes (Sudan I, II, III, and IV; Red B; 7B; Black B; Red G; Metanil Yellow; and Rhodamine B). The extraction of all 14 colors was carried out with cloud point extraction using the nonionic surfactant Triton X 114. Optimized conditions for cloud point extraction were 3% Triton X 114 (w/v), 0.1 M ammonium acetate, and heating at 50°C for 30 min. This approach proved effective in giving quantitative recoveries from a diverse range of food matrixes, and optimized LC gave baseline chromatographic separation for all colors including Sudan IV and Red B. Single-laboratory validation was performed with spiking into liquid matrixes (wine and homemade wine), semiliquid matrixes (sauce and homemade paprika paste), and solid matrixes (spice and homemade chili powder) using the respective blank matrixes for matrix-matched calibration. The LOQ values for water-soluble colors were in the range of 15–150 mg/kg, and for the fat-soluble colors, 0.1–1.5 mg/kg. The mean recovery values were in the range of 69.6–116.0% (except Allura Red and Sunset Yellow in wine, for which recoveries were lower). The mean RSDs for colors were in the range of 4.0–14.8%. A small survey was conducted of samples of confectionery products, dried fruits, wines, bitter sodas, juices, sauces, pastes, and spices, which demonstrated the applicability of the method to a diverse selection of real food samples. Allura Red was detected in strawberry jelly and Sunset Yellow in artificial saffron.

Publisher

Oxford University Press (OUP)

Subject

Pharmacology,Agronomy and Crop Science,Environmental Chemistry,Food Science,Analytical Chemistry

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Food Quality Identification using Machine Learning;International Journal of Advanced Research in Science, Communication and Technology;2024-05-31

2. Fundus- Based Glaucoma Detection- Machine Learning A Design Approach;International Journal of Advanced Research in Science, Communication and Technology;2024-05-25

3. Supramolecular solvent-based-vortex-assisted-dispersive liquid liquid microextraction of Sudan Black B in food samples prior to spectrophotometric detection;Turkish Journal of Chemistry;2024-04-25

4. Rapid Determination of Rhodamine B in Chilli Powder by Electrochemical Sensor Based on Graphene Oxide Quantum Dots;International Journal of Electrochemical Science;2022-12

5. Cloud Point Microextraction of Sudan IV from Food and Cosmetics with Determination by Spectrophotometry;Analytical Letters;2022-03-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3