Chemometrics Tools in Detection and Quantitation of the Main Impurities Present in Aspirin/Dipyridamole Extended-Release Capsules

Author:

El-Ragehy Nariman A1,Yehia Ali M1,Hassan Nagiba Y1,Tantawy Mahmoud A1,Abdelkawy Mohamed2

Affiliation:

1. Cairo University, Faculty of Pharmacy, Analytical Chemistry Department, Kasr el Aini St, 11562 Cairo, Egypt

2. Future University, Faculty of Pharmacy, Analytical Chemistry Department, End of 90th St, Fifth Settlement, New Cairo, Egypt

Abstract

Abstract Aspirin (ASP) and dipyridamole (DIP) in combination is widely used in the prevention of secondary events after stroke and transient ischemic attack. Salicylic acid is a well-known impurity of ASP, and the DIP extended-release formulation may contain ester impurities originating from the reaction with tartaric acid. UV spectral data analysis of the active ingredients in the presence of their main impurities is presented using multivariate approaches. Four chemometric-assisted spectrophotometric methods, namely, partial least-squares, concentration residuals augmented classical least-squares (CRACLS), multivariate curve resolution (MCR) alternating least-squares (ALS), and artificial neural networks, were developed and validated. The quantitative analyses of all the proposed calibrations were compared by percentage recoveries, root mean square error of prediction, and standard error of prediction. In addition, r2 values between the pure and estimated spectral profiles were used to evaluate the qualitative analysis of CRACLS and MCR-ALS. The lowest error was obtained by the CRACLS model, whereas the best correlation was achieved using MCR-ALS. The four multivariate calibration methods could successfully be applied for the extended-release formulation analysis. The application results were also validated by analysis of the stored dosage-form solution, which showed a susceptibility of DIP esterification in the extended-release formulation. Statistical comparison between the proposed and official methods showed no significant difference.

Publisher

Oxford University Press (OUP)

Subject

Pharmacology,Agronomy and Crop Science,Environmental Chemistry,Food Science,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3