Kinetic Profiling of the Hydrolytic Reaction of Benazepril: Metabolic Pathway Simulation

Author:

Hemdan A1,Michael Adel M1

Affiliation:

1. Ahram Candian University, Faculty of Pharmacy, 6th of October City, Giza, Egypt

Abstract

Abstract A simple, specific, and rapid kinetic study of benazepril (BNZ) hydrolysis was developed and validated using HPLC. BNZ was degraded using 0.1 N sodium hydroxide at room temperature to produce benazeprilat, which is an active metabolite of BNZ and acts as an angiotensin-converting enzyme inhibitor. Analysis was carried out using an Athena C18 column (4.6 × 250 mm, 5 µm particle size). The mobile phase consists of a mixture of phosphate buffer (pH 4.5) and acetonitrile (53 + 47, v/v) at a flow rate of 1 mL/min. UV detection was accomplished at 242 nm using moexipril as the internal standard. The method was validated according to International Conference on Harmonization guidelines, and the calibration curve was linear over the range 10–100 µg/mL, with acceptable accuracy and precision. Kinetic profiling of the hydrolysis was shown to follow pseudo-first-order kinetics. The method was applied to the assay of BNZ in combined dosage form with no interference from other ingredients. The obtained results were statistically compared with those of the official method, showing no significant difference.

Publisher

Oxford University Press (OUP)

Subject

Pharmacology,Agronomy and Crop Science,Environmental Chemistry,Food Science,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3