DNA Quality and Quantity Analysis of Camellia sinensis Through Processing from Fresh Leaves to a Green Tea Extract

Author:

Faller Adam C.1,Ragupathy Subramanyam1,Shanmughanandhan Dhivya1,Zhang Yanjun2,Lu Zhengfei2,Chang Peter2,Swanson Gary2,Newmaster Steven G.1

Affiliation:

1. University of Guelph, College of Biological Sciences, Natural Health Product Research Alliance, 50 Stone Rd E., Guelph, ON N1G 2W1, Canada

2. Herbalife International, 990 190th St, Torrance, CA 90502

Abstract

Background: Although there has been some success using DNA barcoding to authenticate raw natural health product (NHP) botanical ingredients, there are many gaps in our understanding of DNA degradation, which may explain low PCR and sequencing success in processed NHPs. Objective: In this study, we measured multiple DNA variables after each step in the processing of a green tea extract in order to document DNA quality and quantity. Methods: We sampled plant material after each step of green tea extract processing: five steps at a Chinese tea farm (n = 10) and five at an NHP processing facility (n = 3). We hypothesized that processing treatments degrade and remove DNA from NHPs, reflected by decreasing quantities of extractable genomic DNA (gDNA), an increasing proportion of small DNA fragments in genomic extracts, and decreasing quantitative PCR (QPCR) efficiency [higher cycle threshold (Ct) values]. DNA from end-production green tea extract was sequenced in order to try to validate material as the botanical of interest. Results: We saw a 41.1% decrease in mean extractable gDNA through farm processing (P < 0.01) and a 99.7% decrease through facility processing (P < 0.05). There was a 26.3% decrease in mean DNA fragment size through farm processing (P < 0.001) and an 82.0% decrease through facility processing (P < 0.05). QPCR efficiency was reduced through processing, marked by significant increases in Ct values with 100 base pair (bp) and 200 bp PCR targets (P < 0.05), and an inability to amplify 300 bp targets when using DNA template from end-production green tea extract. Conclusions: Although there was significant degradation and removal of DNA through processing, sufficiently intact DNA was able to be recovered from highly processed green tea extract for further sequencing and identification. Highlights: This work addresses a key gap in the understanding of DNA degradation through processing and provides useful information to consider when designing molecular diagnostic techniques for NHP identification.

Publisher

Oxford University Press (OUP)

Subject

Pharmacology,Agronomy and Crop Science,Environmental Chemistry,Food Science,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3