Affiliation:
1. Beijing University of Chemical Technology, College of Life Science and Technology, Beijing 100029, People’s Republic of China
2. Ocean University of China, College of Food Science and Engineering, Lab of Nucleic Acid Chemistry and Biotechnology, Qingdao 266003, China
Abstract
Abstract
A methodology of lateral flow immunochromatographic strip based on aptamer was developed for on-site detection of the small molecule micropollutants. In the present study, we try for the first time to investigate the feasibility of developing a strip assay for the analysis of micropollutants as methodological prototypes by combining the high selectivity and affinity of aptamers with the unique optical properties of nanogolds. This quantitative method was based on the competition for the aptamer between targets and DNA probes. Crucial parameters that might influence the sensitivity, such as the size of nanogolds, amount of aptamer, type and pH of streptavidin, type of nitrocellulose (NC) membrane, blocking procedure, and reading time, were systematically investigated to obtain the optimum assay performance. With the optimized conditions [nanogolds 25 nm, 50 μM aptamer, pH 8 of GSA (a type of streptavidin named “SA Gold,” which is a sulfhydrylization streptavidin), Millipore HFC 135 NC membrane, 1% bovine serum albumin as the blocking agent and added in the running buffer and sample pad soakage agents, and 20 min reading time] the aptamer-based lateral flow assay will show a low visual limit of detection and scanning reader LOD. The strip for on-site screening using colorants of aptamer functionalized nanogold particles did not require any complicated equipment and was a potential portable tool for rapid identification of micropollutants.
Publisher
Oxford University Press (OUP)
Subject
Pharmacology,Agronomy and Crop Science,Environmental Chemistry,Food Science,Analytical Chemistry
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献