Degradation Studies of Selected Bisphenols in the Presence of β-Cyclodextrin and/or Duckweed Water Plant

Author:

Kaleniecka Aleksandra1,Zarzycki Paweł K1

Affiliation:

1. Koszalin University of Technogy, Faculty of Civil Engineering, Environmental and Geodetic Sciences, Department of Environmental Technologies and Bioanalytics, Śniadeckich 2, 75-453 Koszalin, Poland

Abstract

Abstract Background: This research reports a multivariate experiment enabling observation of the potential application of macrocyclic compound [β-cyclodextrin (β-CD)] and/or duckweed organisms as the active factors for elimination of selected bisphenols A, B, and S from water samples. Objective: Target bisphenols selection was based on observation that such components can be present in food or environmental samples (e.g., vegetable/fruit juices, milk, drinking water, or treated wastewater). Methods: Biological research was carried out using aquatic organisms containing chlorophyll, particularly duckweed (Lemna minor L), that may work as an active biomass for the elimination or extraction of bisphenols micropollutants from water. Using such a system, we studied the potential encapsulation effect and removal efficiency of nontoxic macrocyclic oligosaccharide (β-cyclodextrin) acting as an encapsulation reagent to promote the removal of selected bisphenols from liquid phase both with and without the presence of duckweed biomass. Results: Experimental data have revealed that β-CD or combined β-CD/duckweed system has an effect on bisphenols elimination from water. The initial data set obtained from this preliminary experiment (and combined with supramolecular complex formation data calculated from chromatographic experiments, published previously) enables designing of further experiments focusing on the development of green chemistry technology. Conclusions: It is hoped that this may be used for the efficient removal of low-molecular-mass micropollutants using classical technological wastewater treatment processes modified by biomass and macrocyclic additives. This process needs to be optimized, but the results presented have revealed that such green chemistry technology, if successful, may be an interesting alternative for the selective removal of the micropollutants investigated from wastewater using classical adsorbents (e.g., carbons and carbon-related nanomaterials), particularly in terms of the worldwide problem with microplastic pollutants in the environment and food products.

Publisher

Oxford University Press (OUP)

Subject

Pharmacology,Agronomy and Crop Science,Environmental Chemistry,Food Science,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3