Analysis of accidents in maritime transport using the method of Bayesian trust networks

Author:

Popov Anatoly N.ORCID,Zelenkov Gennadiy A.ORCID,Pluzhnik Valeriy S.ORCID,Borodin Oleg E.ORCID

Abstract

Maritime incidents, though rare, have a significant impact on both the global economy and the environment. Improving maritime navigation practices always requires new ways to enhance safety, inevitably involving learning from past experiences and mistakes. In this context, probabilistic analysis of incidents and their associated consequences can play a crucial role in creating a safer and more efficient maritime transportation system. Bayesian networks constitute a class of probabilistic models based on statistics, decision theory, and graph theory. This paper describes the analysis of maritime incident statistics by selecting probabilistic parameters influencing the risk of their occurrence. Important parameters from this database are grouped, and a Bayesian network is constructed to illustrate the relationships between them. This, in turn, provides insight into the dependencies existing among the variables in the database and the fundamental reasons for these accidents. The data for this study are based on the Lloyds Register and IMO incident databases from 1990 to 2022. Key factors from this database are grouped, and a Bayesian network is built to show the relationships between the corresponding variables, providing an understanding of the probabilistic dependencies among the variables in the database and the primary causes of these incidents.

Publisher

Volga State University of Water Transport

Reference12 articles.

1. Попов А.Н. Теоретико-методологические основы интеграции и отображения информации в морской эргатической системе : Дис. … докт. физ. мат. наук: 05.22.19 / А.Н. Попов – Новороссийск, 2021 – 340 с

2. Probabilistic method of predicting ship collision damage// Brown AJ, Chen D.// Ocean Eng Int J. – 2002- 6(1)-P.54–65.

3. A tutorial on learning with Bayesian networks. // Heckerman D.// In: Jordan M. editor, Learning in graphical models. - Cambridge (MA): MIT Press - 1998 - P. 301–354.

4. International Maritime Organization (IMO): Maritime Facts and Figures

5. https://www.imo.org/en/KnowledgeCentre/Pages/MaritimeFactsFigures-Default.aspx

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3