Features of creating a mathematical model and its implementation for modeling the hydrodynamics of a river flow in the lower district of the Oka r.

Author:

Lipatov Igor V.ORCID

Abstract

The development of computer technology and the complication of engineering problems have made mathematical modeling an integral part of design work in the construction of complex water transport and bridge hydraulic structures. This allows, with a minimum of labor and intellectual costs, to obtain maximum information about the nature of the future interaction between the future structure and the river channel. Modeling the hydrodynamics of rivers is associated with a complex topology of the computational bottom area. In addition to this, one has to solve three-dimensional problems based on the Navier-Stokes equations. The latter, in combination with the problem of the ratios of the dimensions of length, width and depth, pose additional problems in the way of practical implementation and obtaining results. These problems are especially pronounced when modeling large rivers in the European part of Russia, such as the Oka and Volga. This is due to the fact that the planned dimensions of the river flow are hundreds of times greater than the depth values, and a strict approximation of the computational domain requires the use of equal-dimensional, computational elements. These problems can be circumvented by the use of modern CAD/CAE computing technologies in combination with special settings of the iterative solver. The results of applying these achievements of computational technologies in relation to solving the problem for the lower reaches of the river. Oka is presented in the article.

Publisher

Volga State University of Water Transport

Reference13 articles.

1. Липатов И.В. Монография «Гидродинамика речных потоков и ее влияние на эксплуатационные параметры судоходных гидротехнических сооружений» - Н.Новгород изд, ВГУВТ с. 106

2. Патанкар С. Численные методы решения задач теплообмена и динамики жидкости / Пер. с англ. – М.: Энергоатомиздат, 1984. – 152 с.

3. Launder, B.E., and Spalding, D.B. 1974. ‘The numerical computation of turbulent flows’, Comp. Meth. in Appl. Mech. and Eng., 3, pp. 269-289.

4. Rodi, W. 1979. ‘Influence of buoyancy and rotation on equations for turbulent length scale’, Proc. 2nd Symp. on Turbulent Shear Flows.

5. El Tahry, S.H. 1983. ‘k-equation for compressible reciprocating engine flows’, AIAA J. Energy, 7, No. 4, pp. 345–353.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3