GPR Image Recovery Effect on Faster R-CNN-Based Buried Target Detection

Author:

Kumlu Deniz

Abstract

Measurements acquired through ground-penetrating radar (GPR) may contain missing information that needs to be recovered before the implementation of any post-processing method, such as target detection, since buried target detection methods fail and cannot produce desired results if the input GPR image contains missing information. This study proves that the recovery of missing information in a GPR image has a direct influence on the performance of subsequent target detection methods. Thus, state-of-the-art matrix completion methods are applied to the GPR image with missing information in both pixel- and column-wise cases with different missing rates, such as 30% and 50%. After the GPR image is successfully recovered, the faster region-based convolutional neural network (Faster R-CNN) target detection method is applied. The performance correlation between matrix completion accuracy and the target detection method’s confidence score is analyzed using both quantitative and visual results. The obtained results demonstrate the importance of GPR image recovery prior to any post-processing implementation, such as target detection.

Publisher

Korean Institute of Electromagnetic Engineering and Science

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Instrumentation,Radiation

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Detection of Buried Nonlinear Targets Using DORT;Journal of Electromagnetic Engineering and Science;2024-05-31

2. Deep Learning-Based Suppression of Strong Noise in GPR Data for Railway Subgrade Detection;IEEE Transactions on Geoscience and Remote Sensing;2024

3. Automatic Detection for Road Voids from GPR Images using Deep Learning Method;2023 4th International Conference on Computer Vision, Image and Deep Learning (CVIDL);2023-05-12

4. GPR Data Reconstruction Using Residual Feature Distillation Block U-Net;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3