SRCNN: Stacked-Residual Convolutional Neural Network for Improving Human Activity Classification Based on Micro-Doppler Signatures of FMCW Radar

Author:

Nguyen NgocBinh,Doan Van-Sang,Pham MinhNghia,Le VanNhu

Abstract

Current methods for daily human activity classification primarily rely on optical images from cameras or wearable sensors. Despite their high detection reliability, camera-based approaches suffer from several drawbacks, such as low-light conditions, limited range, and privacy concerns. To address these limitations, this article proposes the use of a frequency-modulated continuous wave radar sensor for activity recognition. A stacked-residual convolutional neural network (SRCNN) is introduced to classify daily human activities based on the micro-Doppler features of returned radar signals. The model employs a two-layer stacked-residual structure to reuse former features, thereby improving the classification accuracy. The model is fine-tuned with different hyperparameters to find a trade-off between classification accuracy and inference time. Evaluations are conducted through training and testing on both simulated and measured datasets. As a result, the SRCNN model with six stacked-residual blocks and 64 filters achieves the best performance, with accuracies exceeding 95% and 99% at 0 dB and 10 dB, respectively. Remarkably, the proposed model outperforms several state-of-the-art CNN models in terms of classification accuracy and execution time on the same datasets.

Publisher

Korean Institute of Electromagnetic Engineering and Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3