Author:
Srigutomo Wahyu,Hapsoro Cahyo Aji,Purqon Acep,Warsa ,Sutarno Doddy,Kagiyama Tsuneomi
Abstract
A nonlinear stochastic inversion scheme, called very fast simulated annealing (VFSA), was applied to the time-domain electromagnetic data generated from a horizontal electric dipole. The forward formulation of the vertical magnetic field was expressed in the Laplace domain by applying the Hankel integral transform. Time-domain transformation was performed by applying the inverse Laplace transform using the Gaver–Stehfest algorithm. In this study, for noise-free synthetic data, the VFSA scheme yielded the smallest misfit and an inverted resistivity model that resembled the test model. The addition of 5% random noise to the synthetic data produced the same level of misfit and a model that still mimicked the test model. However, the addition of 10% noise to the synthetic data resulted in a misfit value that was three times that of the first two values and a resistivity model with a large discrepancy with the test model, particularly at large depths. These results indicate the efficacy of the VFSA inversion scheme for inferring the subsurface resistivity structure from the electromagnetic data. This inversion scheme was applied to field data measured in a volcanic environment. The general pattern of the resistivity structure inferred by the VFSA inversion is consistent with the structure obtained previously by using a deterministic inversion scheme.
Publisher
Korean Institute of Electromagnetic Engineering and Science
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Instrumentation,Radiation
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献