Author:
Pech Phanam,Kim Phirun,Chaudhary Girdhari,Jeong Yongchae
Abstract
This paper presents a quasi-elliptic filter (QEF) with arbitrary termination impedances (ATI). The proposed QEF is designed by adding cross-coupling between the first and last resonators of an ATI bandpass filter (BPF) with the Chebyshev response. The proposed QEFs with ATI can be designed in even-order resonators and the location of the pair transmission zeros (TZs) is controllable. To prove the validity of the proposed design, the fourth-order QEFs with ATI were implemented on a single-layer substrate-integrated waveguide (SIW) cavity at a center frequency (<i>f</i><sub>0</sub>) of 10 GHz with the pair TZs at 10 ± 1.4 GHz. These SIW QEFs with ATI improve frequency selectivity and effectively suppress the out-of-band signal with high power handling. The measured maximum insertion loss (|<i>S</i><sub>21</sub>|) and minimum return loss (|<i>S</i><sub>11</sub>|) of the SIW QEF with unequal real-to-real ATI are 0.93 dB and 17.4 dB, respectively, in the passband. Similarly, the maximum |<i>S</i><sub>21</sub>| and minimum |S<i>S</i><sub>11</sub>| of the SIW QEF with complex-to-real ATI are 1.2 dB and 18 dB, respectively.yer substrate-integrated waveguide (SIW) cavity at a center frequency (
Funder
National Research Foundation of Korea
Ministry of Science and ICT
Ministry of Education
Publisher
Korean Institute of Electromagnetic Engineering and Science
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Instrumentation,Radiation
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献