A Deep Learning-Based Compact Weighted Binary Classification Technique to Discriminate between Targets and Clutter in SAR Images

Author:

Seo Seung Mo,Choi Yeoreum,Lim Ho,Park Ji Hoon

Abstract

The proposed approach is a deep learning-based compact weighted binary classification (DL-CWBC) method to discriminate between targets and clutter in synthetic aperture radar (SAR) images. A new modified cross-entropy error function is proposed to improve the probability of detection by controlling the rate of false alarms (FAs). The unique feature of a CWBC algorithm is reducing the FA rate and maximizing the probability of target detection without missing any target. For pre-processing, targets and clutter are detected through a constant false alarm rate (CFAR) as a conventional detection algorithm. These are then manually divided into two classes. The classified targets and clutter were trained through a ResNet-101 network. There is a trade-off between the minimization of the FA rate and the maximization of the detection probability for targets of interest (TOIs). The weighted coefficient of the modified cross-entropy error function tries to maximize the performance of this trade-off. In addition, the proposed approach enables us not to miss any targets by an extreme distinction decision. Above all, the DL-CWBC algorithm performs very well despite its simplicity.

Publisher

Korean Institute of Electromagnetic Engineering and Science

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Instrumentation,Radiation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Characteristics of Land Clutter Signals and Their Synthesis Methods;The Journal of Korean Institute of Electromagnetic Engineering and Science;2023-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3