Strong Harnack inequality for the Boltzmann equation
Publisher
Cellule MathDoc/CEDRAM
Reference17 articles.
1. [1] Donald Gary Aronson. Bounds for the fundamental solution of a parabolic equation. Bull. . Amer. Math. Soc., 73:890–896, 1967.
2. [2] Richard F. Bass and David A. Levin. Transition probabilities for symmetric jump processes. Trans. Amer. Math. Soc., 354(7):2933–2953, 2002.
3. [3] Eugene Barry Fabes and Daniel W. Stroock. A new proof of Moser’s parabolic Harnack inequality using old ideas of Nash. Arch. Rat. Mech. Anal., 96:327–338, 1986.
4. [4] Ennio De Giorgi. Sulla differenziabilità e l’analiticità delle estremaili degli integrali multipli regolari. Mem. Accad. Sci. Torino. Cl. Sci. Fis. Math. Nat., 3:25–43, 1957.
5. [5] François Golse, Cyril Imbert, Clément Mouhot, and Alexis F. Vasseur. Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 19(1):253–295, 2019.