Author:
Bordeaux Montrieux William,Sjöstrand Johannes
Reference12 articles.
1. [1] Bordeaux Montrieux (W.).— Loi de Weyl presque sûre et résolvante pour des opérateurs différentiels non-autoadjoints, Thesis, CMLS, Ecole Polytechnique (2008). See also paper to appear in Annales Henri Poincaré. http://pastel.paristech.org/5367/
2. [2] Davies (E.B.).— Semi-classical states for non-self-adjoint Schrödinger operators, Comm. Math. Phys. 200(1), p. 35-41 (1999).
3. [3] Dimassi (M.), Sjöstrand (J.).— Spectral asymptotics in the semi-classical limit, London Math. Soc. Lecture Notes Ser., 268, Cambridge Univ. Press, (1999).
4. [4] Grigis (A.).— Estimations asymptotiques des intervalles d’instabilité pour l’équation de Hill, Ann. Sci. École Norm. Sup. (4) 20(4), p. 641-672 (1987).
5. [5] Hager (M.).— Instabilité spectrale semiclassique d’opérateurs non-autoadjoints. II. Ann. Henri Poincaré, 7(6), p. 1035-1064 (2006).
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Pseudospectrum and binary black hole merger transients;Classical and Quantum Gravity;2022-09-22
2. Pseudospectrum and Black Hole Quasinormal Mode Instability;Physical Review X;2021-07-06
3. Distribution of Large Eigenvalues for Elliptic Operators;Non-Self-Adjoint Differential Operators, Spectral Asymptotics and Random Perturbations;2019
4. Introduction;Non-Self-Adjoint Differential Operators, Spectral Asymptotics and Random Perturbations;2019
5. Spectral Asymptotics for $$\mathcal {P}\mathcal {T}$$ Symmetric Operators;Non-Self-Adjoint Differential Operators, Spectral Asymptotics and Random Perturbations;2019