1. [1] Kirchdoerfer, T.; Ortiz, M. Data-driven computational mechanics, Comput. Methods Appl. Mech. Eng., Volume 304 (2016), pp. 81-101
2. [2] Bessa, M. A.; Bostanabad, R.; Liu, Z.; Hu, A.; Apley, D. W.; Brinson, C.; Chen, W.; Liu, W. K. A framework for data-driven analysis of materials under uncertainty: countering the curse of dimensionality, Comput. Methods Appl. Mech. Eng., Volume 320 (2017), pp. 633-667
3. [3] Liu, Z.; Fleming, M.; Liu, W. K. Microstructural material database for self-consistent clustering analysis of elastoplastic strain softening materials, Comput. Methods Appl. Mech. Eng., Volume 330 (2018), pp. 547-577
4. [4] Gonzalez, D.; Chinesta, F.; Cueto, E. Thermodynamically consistent data-driven computational mechanics, Contin. Mech. Thermodyn., Volume 31 (2019), pp. 239-253
5. [5] Ibanez, R.; Abisset-Chavanne, E.; Aguado, J.V.; Gonzalez, D.; Cueto, E.; Chinesta, F. A manifold learning approach to data-driven computational elasticity and inelasticity, Arch. Comput. Methods Eng., Volume 25 (2018) no. 1, pp. 47-57