1. [AC15] A. Agboola and L. McCulloh, On the relative Galois module structure of rings of integers in tame extensions, Available at: http://arxiv.org/abs/1410.4829.
2. [BS13] N. P. Byott and B. Sodaïgui, Realizable Galois module classes over the group ring for non abelian extensions, Ann. Inst. Fourier (Grenoble), 63 (1):303–371, 2013.
3. [BS05a] N. P. Byott and B. Sodaïgui, Galois module structure for extensions of degree 8: realizable classes over the group ring, J. Number Theory, 112 (1):1–19, 2005.
4. [BS05b] N. P. Byott and B. Sodaïgui, Realizable Galois module classes for tetrahedral extensions, Compos. Math., 141 (3):573–582, 2005.
5. [CR81] C. W. Curtis and I. Reiner, Methods of representation theory. Vol. I, Pure and Applied Mathematics (New York). John Wiley & Sons Inc., New York, 1981. With applications to finite groups and orders, A Wiley-Interscience Publication.