1. [AG19] Appel, A.; Gautam, S. An explicit isomorphism between quantum and classical 𝔰𝔩 n , Transform. Groups (2019), 36 pages
2. [AMR06] Arnaudon, Daniel; Molev, Alexander; Ragoucy, Eric On the R-matrix realization of Yangians and their representations, Ann. Henri Poincaré, Volume 7 (2006) no. 7-8, pp. 1269-1325
3. [Ber89] Bernard, Denis Vertex operator representations of the quantum affine algebra 𝒰 q (B r (1) ), Lett. Math. Phys., Volume 17 (1989) no. 3, pp. 239-245
4. [BT19] Bershtein, Mikhail; Tsymbaliuk, Alexander Homomorphisms between different quantum toroidal and affine Yangian algebras, J. Pure Appl. Algebra, Volume 223 (2019) no. 2, pp. 867-899
5. [BTM87] Bernard, Denis; Thierry-Mieg, Jean Level one representations of the simple affine Kac-Moody algebras in their homogeneous gradations, Comm. Math. Phys., Volume 111 (1987) no. 2, pp. 181-246 http://projecteuclid.org/euclid.cmp/1104159538