Existence, uniqueness and stability for spatially inhomogeneous Becker-Döring equations with diffusion and convection terms
Author:
Dubovski P. B.,Ha S.-Y.
Publisher
Cellule MathDoc/CEDRAM
Reference21 articles.
1. [1] Aronson (D. G.).— The fundamental solution of a linear parabolic equation containing a small parameter. Ill. J. Math. 3, 580-619 (1959).
2. [2] Ball (J. M.), Carr (J.), Penrose (O.).— The Becker-Döring cluster equations : basic properties and asymptotic behaviour of solutions, Comm. Math. Phys. 104, 657-692 (1986).
3. [3] Ball (J. M.), Carr (J.).— Asymptotic behaviour of solutions to the Becker-Döring equations for arbitrary initial data. Proc. Royal Soc. Edin. Sect. A 108, 109-116 (1988).
4. [4] Benilan (P.), Wrzosek (D.).— On an infinite system of reaction-diffusion equations. Adv. Math. Sci. Appl. 7, 351-366 (1997).
5. [5] Chae (D.), Dubovski (P. B.).— Existence and uniqueness for spatially inhomogeneous coagulation equation with sources and effluxes. Z. angew Math. Phys. (ZAMP) 46, 580-594 (1995).