Affiliation:
1. University of Massachusetts
Abstract
The Theory of Behavioral Mechanics is the behavioral analogue of Newton's laws of motion, with the rate of responding in operant conditioning corresponding to physical velocity. In an earlier work, the basic relation between rate of responding and sessions under two FI schedules and over a range of commonly used session values had been shown to be a power function. Using that basic relation, functions for behavioral acceleration, mass, and momentum are derived here. Data from other laboratories also support the applicability of a power function to VI schedules. A particular numerical value is introduced here to be the standard reference value for the behavioral force under the VI-60-S schedule. This reference allows numerical values to be calculated for the behavioral mass and momentum of individual animals. A comparison of the numerical values of the momenta of two animals can be used to evaluate their relative resistances to change, e.g., to extinction, which is itself viewed as a continuously changing behavioral force being imposed on the animal. This overall numerical approach allows behavioral force-values to be assigned to various experimental conditions such as the evaluation of the behavioral force of a medication dosage.