Affiliation:
1. Center for General Education, Nagasaki Institute of Applied Science, Research Institute of Physical Fitness, Japan Women's College of Physical Education
2. Faculty of Business Administration, Osaka University of Commerce
Abstract
It remains unclear whether activation kinetics in the motor cortex area is affected by training. The purpose of the present study was to examine the effect of training on the motor cortex activation. To accomplish this, the correlation between maximal voluntary contraction and motor cortex (M1) activity was examined. Differences in the motor cortex activation between two groups during exercise were examined in 14 male volunteer participants ( M age 25.2 yr., SD = 1.4): seven highly trained athletes (VO2max = 60 ml/kg/min.; maximal voluntary contraction > 55 kg, M MVC = 63.6 kg, SD = 4.2) and seven nonathletes (VO2max < 45 ml/kg/min.; MVC < 50.0 kg, M MVC = 43.5 kg, SD = 5.2). Participants were familiarized with the study protocol, during which they performed a maximal voluntary static handgrip test. Specifically, M1 activation was measured by near-infrared spectroscopy throughout a handgrip exercise in which participants performed a sustained middle-intensity handgrip exercise (50% of maximal voluntary contraction) until voluntary exhaustion. In the Athlete group, activation in the M1 at voluntary exhaustion fell below the resting value. In the Nonathlete group, activation in the M1 was elevated throughout the exercise. Results suggest that motor signals from the motor cortex area correlate with exercise training status, especially during fatiguing exercise.
Subject
Sensory Systems,Experimental and Cognitive Psychology
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献