The digenean complex life cycle: phylostratigraphy analysis of the molecular signatures
-
Published:2022-06-24
Issue:2
Volume:67
Page:
-
ISSN:2587-5779
-
Container-title:Biological Communications
-
language:
-
Short-container-title:BioComm
Author:
Nesterenko MaksimORCID, Shchenkov SergeiORCID, Denisova SofiaORCID, Starunov ViktorORCID
Abstract
The parasitic flatworms from Digenea group have been the object of numerous in-depth studies for several centuries. The question of the evolutionary origin and transformation of the digenean complex life cycle remains relevant and open due to the biodiversity of these parasites and the absence of fossil records. However, modern technologies and analysis methods allow to get closer to understanding the molecular basis of both the realization of the cycle and its complication. In the present study, we have applied phylostratigraphy and evolutionary transcriptomics approaches to the available digenean genomic and transcriptomic data and built ancestral genomes models. The comparison results of Platyhelminthes and Digenea ancestor genome models made it possible to identify which genes were gained and duplicated in the possible genome of digenean ancestor. Based on the bioprocesses enrichment analysis results, we assumed that the change in the regulation of many processes, including embryogenesis, served as a basis for the complication of the ancestor life cycle. The evolutionary transcriptomics results obtained revealed the “youngest” and “oldest” life cycle stages of Fasciola gigantica, F. hepatica, Psilotrema simillimum, Schistosoma mansoni, Trichobilharzia regenti, and T. szidati. Our results can serve as a basis for a more in-depth study of the molecular signatures of life cycle stages and the evolution transformation of individual organ systems and stage-specific traits.
Publisher
Saint Petersburg State University
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology
Reference63 articles.
1. 2. Almagro Armenteros, J. J., Tsirigos, K. D., Sønderby, C. K., Petersen, T. N., Winther, O., Brunak, S., von Heijne, G., and Nielsen, H. 2019. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nature Biotechnology 37(4):420–423. https://doi.org/10.1038/s41587-019-0036-z 3. Almudi, I., Vizueta, J., Wyatt, C. D. R., de Mendoza, A., Marlétaz, F., Firbas, P. N., Feuda, R., Masiero, G., Medina, P., Alcaina-Caro, A., Cruz, F., Gómez-Garrido, J., Gut, M., Alioto, T. S., Vargas-Chavez, C., Davie, K., Misof, B., González, J., Aerts, S., Lister, R., Paps, J., Rozas, J., SánchezGracia, A., Irimia, M., Maeso, I., and Casares, F. 2020. Genomic adaptations to aquatic and aerial life in mayflies and the origin of insect wings. Nature Communications 11(1):1–11. https://doi.org/10.1038/s41467-020-16284-8 4. Altenhoff, A. M., Levy, J., Zarowiecki, M., Tomiczek, B., Vesztrocy, A. W., Dalquen, D. A., Müller, S., Telford, M. J., Glover, N. M., Dylus, D., and Dessimoz, C. 2019. OMA standalone: Orthology inference among public and custom genomes and transcriptomes. Genome Research 29(7):1152–1163. https://doi.org/10.1101/gr.243212.118 5. Arendsee, Z., Li, J., Singh, U., Seetharam, A., Dorman, K., and Wurtele, E. S. 2019. Phylostratr: A framework for phylostratigraphy. Bioinformatics 35(19):3617–3627. https://doi.org/10.1093/bioinformatics/btz171
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|