Dynamic decision-making under uncertainty: Bayesian learning in environmental game theory

Author:

,Zhou Jiangjing,Petrosian Ovanes L., ,Gao HongweiORCID,

Abstract

This paper investigates the issue of pollution control dynamic games defined over a finite time horizon, with a particular focus on parameter uncertainty within the ecosystem. We employ a dynamic Bayesian learning method to estimate uncertain parameters in the dynamic equation, differing from traditional single-instance Bayesian learning which does not involve continuous signal reception and belief updating. Our study validates the effectiveness of the dynamic Bayesian learning approach, demonstrating that, over time, the beliefs of the players progressively converge towards the true values of the unknown parameters. Through numerical simulations, we illustrate the convergence process of beliefs and compare optimal control strategies under different scenarios. The findings of this paper offer a new perspective for understanding and addressing the uncertainties in pollution control problems.

Publisher

Saint Petersburg State University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3