Stability analysis of mechanical systems with distributed delay via decomposition

Author:

Aleksandrov Alexander Yu., ,Tikhonov Alexey A.,

Abstract

The article analyzes a linear mechanical system with a large parameter at the vector of velocity forces and a distributed delay in positional forces. With the aid of the decomposition method, conditions are obtained under which the problem of stability analysis of the original system of the second-order differential equations can be reduced to studying the stability of two auxiliary first-order subsystems. It should be noted that one of the auxiliary subsystems does not contain a delay, whereas for the second subsystem containing a distributed delay, the stability conditions are formulated in terms of the feasibility of systems of linear matrix inequalities. To substantiate this decomposition, the Lyapunov direct method is used. Special constructions of Lyapunov—Krasovskii functionals are proposed. The developed approach is applied to the problem of monoaxial stabilization of a rigid body. The results of a numerical simulation are presented confirming the conclusions obtained analytically.

Publisher

Saint Petersburg State University

Subject

Applied Mathematics,Control and Optimization,General Computer Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3