Abstract
The paper considers the relationship between search theory and information theory. The traditional problem of search theory is to develop a search plan for a physical object in the sea or on land. The search plan has to develop the distribution of available search resources in such a way that the probability of detection the search object is to be maximum. The optimal solution is traditionally considered as so-called "uniformly optimal search plan", which provides a uniform distribution of the posterior probability of the location of the object as the search is conducted. At the same time, optimality simultaneously according to the criteria of maximum detection probability and equality of a posteriori probability is possible only for the exponential detection function, which is used most often in search theory. For other kinds of detection functions, the optimal solutions according to the specified criteria do not match. In this paper, the approach to this problem is considered on the basis of the maximum entropy principle. For a situation of discrete distribution, it is shown that, within the framework of information theory, the search problem has a simpler solution that does not depend on the kind of the detection function.
Publisher
Saint Petersburg State University
Subject
Applied Mathematics,Control and Optimization,General Computer Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The maximum entropy principle in decision theory;Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes;2024
2. Mathematical model of random number generator based on vacuum fluctuations;Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes;2024
3. Theoretical foundation for solving search problems by the method of maximum entropy;Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes;2023