Synthetic data generation methods for training neural networks in the task of segmenting the level of crop nitrogen status on UAV images of agricultural fields

Author:

,Molin Alexander E.,Blekanov Ivan S., ,Mitrofanov Evgenii P., ,Mitrofanova Olga A.,

Abstract

This study is devoted to the automatization of the image masks’ construction of large sized agricultural objects in precision farming tasks for training neural network methods for crop’s nitrogen status analysis using georeferenced images. The scientific direction is extremely relevant because it allows to automate and replace the manual process of data labeling, significantly reducing the cost of preparing training samples. In the paper, four new synthetic data generation methods are proposed for training neural networks aimed at UAV image segmentation by the level of crop nitrogen supply on an agricultural field. In particular, the paper gives a description of synthetic data generation algorithms based on nitrogen covering with lines, parabolas, and areas. Experiments were carried out to test and evaluate the quality of these algorithms using eight modern image segmentation methods: two classical machine learning methods (Random Forest and XGBoost), four convolutional neural network methods based on U-Net architecture, and two transformers (TransUnet and UnetR). The results showed that two algorithms based on areas gave the best accuracy for convolutional neural networks and transformers — 98–100 %. Classical machine learning methods showed very low values for all quality metrics — 27–44 %.

Publisher

Saint Petersburg State University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3