Mathematical modeling of a field emitter with a hyperbolic shape
-
Published:2020
Issue:3
Volume:16
Page:238-248
-
ISSN:1811-9905
-
Container-title:Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes
-
language:
-
Short-container-title:Vestnik SPbSU. Applied Mathematics. Computer Science. Control Processes
Author:
Egorov Nickolay V., ,Vinogradova Ekaterina M.,
Abstract
This article is devoted to modeling a field emission diode system. The emitter surface is a hyperboloid of rotation. The anode surface is a part of the hyperboloid of rotation, in a particular case, a circular diaphragm. A boundary value problem is formulated for the Laplace equation with non-axisymmetric boundary conditions of the first kind. A 3D solution was found by the variable separation method in the prolate spheroidal coordinates. The electrostatic potential distribution is presented in the form of the Legendre functions expansions. The calculation of the expansion coefficients is reduced to solving a system of linear equations with constant coefficients. All geometric dimensions of the system are the parameters of the problem.
Publisher
Saint Petersburg State University
Subject
Applied Mathematics,Control and Optimization,General Computer Science