Development of a preloadable, temperature‐stable, geopolymer‐based gap compensation material

Author:

Morgenstern Hendrik1,Kunde Carsten2,Raupach Michael1

Affiliation:

1. Institute for Building Materials Research Aachen Germany

2. Diamant Polymer GmbH Mönchengladbach Germany

Abstract

AbstractConsequences of climate change are becoming increasingly clear and while resources are dwindling, extreme climatic situations become more frequent. This leads to higher temperatures and thermal stress on the one hand and to the construction of more wind power plants and respectively an increasing demand for gap compensation materials on the other hand. These materials are commonly made of epoxy resins, which perform well under certain circumstances, but have some disadvantages such as heat instability, high costs, high resource claim, and hazards for the environment and health. This paper presents the latest results from the development of a low‐viscosity, high‐temperature stable geopolymer for gap compensation. In several newly developed test rigs, experiments were carried out to investigate injectability, flow behavior, mechanical properties, high‐temperature stability, and the possibility to induce preload. Through inorganic additives, the geopolymer expands or, if expansion is constrained, preloads itself during the hardening. This is essential to retain or enhance the preload of connection bolts and ensure force transmission as any volume reduction would create a new (smaller) gap.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Wiley

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3