Effect and mechanism analysis of matrix resin type on thermal aging characteristics of semi‐conductive shielding material for high voltage cable

Author:

Liu Tianyao1,Liu Tianzhen1,Li Xuejing1,Wei Yanhui1,Zhu Yuanwei2,He Jinliang3,Li Guochang1ORCID

Affiliation:

1. Collage of Materials Science and Engineering, Institute of Advanced Electrical Materials Qingdao University of Science and Technology Qingdao China

2. State Key Laboratory of Electrical Insulation and Power Equipment Xi'an Jiaotong University Xi'an China

3. Department of electrical engineering Tsinghua University Beijing China

Abstract

AbstractThe type of matrix resin of the semi‐conductive shielding layer directly affects the thermal aging characteristics of the semi‐conductive shielding layer and the high‐voltage cable. In this paper, ethylene vinyl acetate (EVA), ethylene ethyl acrylate (EEA), and ethylene butyl acrylate (EBA) resins were used as matrix to prepare carbon black (CB) + EVA, CB + EEA, and CB + EBA shielding materials. The law of physicochemical, electrical, and mechanical properties of different matrix resin shielding materials with aging time was studied, and the influence mechanism of matrix resin on the aging characteristics of shielding materials was analyzed. The results show: with the increase of aging time, the crystallization area and the number of functional groups of the three shielding materials decreased to varying degrees. The number of functional groups in CB + EBA shielding materials decreased evenly with aging time, but that of CB + EVA and CB + EEA shielding materials changed significantly after 7 days of aging. After 60 days of aging, the crystallization area of CB + EBA shielding material changed slightly, but that of CB + EVA and CB + EEA shielding material decrease significantly. The electrical properties of the three shielding materials showed different decreasing trend with aging time. When the aging time is 7 days, the positive temperature coefficient (PTC) effect of CB + EEA shielding material decreases obviously. When the aging time is 30 days, the resistivity of CB + EVA and CB + EEA shielding material increases slowly (9 Ω cm–12 Ω cm) with the increase of temperature. When the aging time is 60 days, the resistivity of CB + EBA shielding material decreases obviously, and the PTC effect weakens obviously. Taking the mechanical properties of the shielding material as reference, the rapid deterioration stage of the mechanical properties of the three shielding materials is different. The CB + EVA and CB + EEA shielding material rapid deterioration time is 0–7 days, and the tensile strength and elongation of the shielding material are greatly reduced. The rapid deterioration stage of CB + EBA shielding material is 7–30 days, and the tensile strength and elongation decrease from 24.38 MPa and 499.5% to 14 MPa and 155.7%, respectively. This work can provide data support for the selection of matrix resin of shielding material and the fault analysis of shielding layer of high voltage cable.

Funder

National Natural Science Foundation of China

Science and Technology Support Plan for Youth Innovation of Colleges and Universities of Shandong Province of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3