Machine Learning Application Identifies Germline Markers of Hypertension in Patients With Ovarian Cancer Treated With Carboplatin, Taxane, and Bevacizumab

Author:

Polano Maurizio1ORCID,Bedon Luca1ORCID,Dal Bo Michele1ORCID,Sorio Roberto2,Bartoletti Michele2,De Mattia Elena1ORCID,Cecchin Erika1ORCID,Pisano Carmela3,Lorusso Domenica45,Lissoni Andrea Alberto6,De Censi Andrea7,Cecere Sabrina Chiara3,Scollo Paolo8,Marchini Sergio9,Arenare Laura10,De Giorgi Ugo11,Califano Daniela12,Biagioli Elena13,Chiodini Paolo14,Perrone Francesco10,Pignata Sandro3,Toffoli Giuseppe1ORCID

Affiliation:

1. Experimental and Clinical Pharmacology Unit Centro di Riferimento Oncologico di Aviano, Istituto di Ricovero e Cura a Carattere Scientifico Aviano Italy

2. Dipartimento di Oncologia Medica Centro di Riferimento Oncologico di Aviano, Istituto di Ricovero e Cura a Carattere Scientifico Aviano Italy

3. Uro‐Gynecologic Oncology Unit Istituto Nazionale Tumori Istituto di Ricovero e Cura a Carattere Scientifico Fondazione G. Pascale Naples Italy

4. Department of Women and Child Health, Division of Gynecologic Oncology Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico Rome Italy

5. Department of Life Science and Public Health Catholic University of Sacred Heart Largo Agostino Gemelli Rome Italy

6. Clinica Ostetrica e Ginecologica, Istituto di Ricovero e Cura a Carattere Scientifico S. Gerardo Monza Università di Milano Bicocca Milano Italy

7. Oncologia Medica Ospedali Galliera Genoa Italy

8. Unità Operativa Ostetricia e Ginecologia, Dipartimento Materno‐Infantile Ospedale Cannizzaro Catania Italy

9. Molecular Pharmacology laboratory Group of Cancer Pharmacology Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital Rozzano Italy

10. Clinical Trial Unit Istituto Nazionale Tumori, Istituto di Ricovero e Cura a Carattere Scientifico, Fondazione G. Pascale Naples Italy

11. Istituto di Ricovero e Cura a Carattere Scientifico Istituto Romagnolo per lo Studio dei Tumori Dino Amadori Meldola Italy

12. Microenvironment Molecular Targets Unit Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale Naples Italy

13. Department Of Oncology Istituto di Ricerche Farmacologiche Mario Negri IRCCS Milano Milano Italy

14. Department of Mental Health and Public Medicine, Section of Statistics Università degli Studi della Campania Luigi Vanvitelli Naples Italy

Abstract

Pharmacogenomics studies how genes influence a person's response to treatment. When complex phenotypes are influenced by multiple genetic variations with little effect, a single piece of genetic information is often insufficient to explain this variability. The application of machine learning (ML) in pharmacogenomics holds great potential — namely, it can be used to unravel complicated genetic relationships that could explain response to therapy. In this study, ML techniques were used to investigate the relationship between genetic variations affecting more than 60 candidate genes and carboplatin‐induced, taxane‐induced, and bevacizumab‐induced toxicities in 171 patients with ovarian cancer enrolled in the MITO‐16A/MaNGO‐OV2A trial. Single‐nucleotide variation (SNV, formerly SNP) profiles were examined using ML to find and prioritize those associated with drug‐induced toxicities, specifically hypertension, hematological toxicity, nonhematological toxicity, and proteinuria. The Boruta algorithm was used in cross‐validation to determine the significance of SNVs in predicting toxicities. Important SNVs were then used to train eXtreme gradient boosting models. During cross‐validation, the models achieved reliable performance with a Matthews correlation coefficient ranging from 0.375 to 0.410. A total of 43 SNVs critical for predicting toxicity were identified. For each toxicity, key SNVs were used to create a polygenic toxicity risk score that effectively divided individuals into high‐risk and low‐risk categories. In particular, compared with low‐risk individuals, high‐risk patients were 28‐fold more likely to develop hypertension. The proposed method provided insightful data to improve precision medicine for patients with ovarian cancer, which may be useful for reducing toxicities and improving toxicity management.

Publisher

Wiley

Subject

Pharmacology (medical),Pharmacology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3