Numerical investigation of hydrothermal performance over perforated conical pin heat sinks

Author:

Al‐Karooshi Mohammed A.1,Chahrour Khaled M.1,Khalil Wissam H.2,Al‐Damook Amer2ORCID

Affiliation:

1. Department of Mechanical Engineering Faculty of Engineering, Karabuk University Karabuk Turkey

2. Renewable Energy Research Centre University of Anbar Ramadi Iraq

Abstract

AbstractOver the past few decades, researchers have shown significant interest in enhancing the thermal efficiency of heat sinks while simultaneously increasing the power generation capacity of electronic devices and reducing their size. In this study, the focus lies on the originality of employing conical perforated pin heat sinks with multiple perforations (N = 0, 1, 2, and 3) and various conical pins inclination angles (Φ = 0°, 1°, 2°, 3°, and 4°). The study aimed to numerically investigate the effects of a perforated conical pin and cone inclination angle on heat transfer, pressure drop, CPU temperature, and hydrothermal performance (HTP) across the heat sinks using a three‐dimensional, turbulent flow as k–ω SST model combined with the thermal conjugate model. A validated CFD model is employed to conduct a parametric analysis of the effects of the quantity and placement of circular holes. A summary of the results reveals that Model B3 exhibited the highest HTP value, reaching approximately 1.15 at U = 10 m/s, with a commendable reduction in heat sink mass of over 18%. Ultimately, the perforated conical pin heat sink demonstrates the potential to fulfill the primary objective of this investigation, which is achieving an overall improvement in Nusselt number, CPU temperature, pressure drop, and reduced heat sink mass.

Publisher

Wiley

Subject

Fluid Flow and Transfer Processes,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3