Propagating input uncertainties into parameter uncertainties and model prediction uncertainties—A review

Author:

Abdi Kaveh1,Celse Benoit2,McAuley Kim1ORCID

Affiliation:

1. Department of Chemical Engineering Queen's University Kingston Ontario Canada

2. IFP Energies nouvelles Rond‐point de l'échangeur de Solaize Solaize France

Abstract

AbstractA review of uncertainty quantification techniques is provided for a variety of situations involving uncertainties in model inputs (independent variables). The situations of interest are divided into three categories: (i) when model prediction uncertainties are quantified based on uncertainties in uncertain inputs, (ii) when parameter estimate uncertainties are calculated by propagation of uncertainties from measured inputs and outputs, and (iii) when model prediction uncertainties are quantified based on corresponding uncertainties in measured inputs and uncertain parameter estimates. For all three situations, linearization‐based and Monte Carlo‐based techniques are reviewed and details for their corresponding algorithms are presented. Recommendations are provided on which uncertainty quantification techniques are best for different types of chemical engineering models based on the amount of input uncertainty and nonlinearity over the range of plausible input and parameter values.

Funder

Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3