Control valve stiction detection using Markov transition field and deep convolutional neural network

Author:

Memarian Amirreza1,Damarla Seshu Kumar1ORCID,Huang Biao1

Affiliation:

1. Department of Chemical and Materials Engineering University of Alberta Edmonton Alberta Canada

Abstract

AbstractControl valve stiction is an industrial problem that often causes oscillations in process control loops. Oscillating control loops are not capable of maintaining key process variables near or at their desired values, thus yielding low‐quality products, inducing economic loss, and increasing environmental impacts. Therefore, it is of vital importance to detect stiction in industrial control valves. In this regard, the present work proposes a new method based on the Markov transition field and convolutional neural network (CNN) to identify sticky control valves in industrial control loops. The Markov transition field is employed to convert process variable (PV) and controller output (OP) into two‐dimensional images, which are then utilized by CNN to learn to distinguish stiction induced oscillations from oscillations brought out by a non‐stiction condition. A transfer learning strategy is adopted to improve the stiction detection capability of the proposed method. Its performance is evaluated via its application to benchmark control loops taken from the chemical, paper, mining, and metal industries. Results demonstrate that the proposed method obtains the correct verdict for the majority of the control loops studied.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Subject

General Chemical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3