Design and study of a novel ammonia‐based CO2 capture process with bipolar membrane electrodialysis

Author:

Song Zhengyuan1,Sun Guogang123,Wang Zetao1,Yuan Shiwei1,Xi Chenhao1

Affiliation:

1. College of Mechanical and Transportation Engineering China University of Petroleum Beijing China

2. State Key Laboratory of Heavy Oil Processing China University of Petroleum Beijing China

3. Beijing Key Laboratory of Process Fluid Filtration and Separation China University of Petroleum Beijing China

Abstract

AbstractAqueous ammonia is a promising absorbent in the field of post combustion CO2 capture. However, the high volatilization of NH3 results in a high energy requirement, as well as solid precipitation during the CO2 regeneration process. A novel process was designed to reduce energy consumption and solve the problem. The bipolar membrane electrodialysis (EDBM) unit and CO2 regeneration reactor were taken as the regeneration part. In the novel process, the bubble in the EDBM unit would be eliminated, and the regeneration of CO2 and aqueous ammonia would be operated separately, which significantly reduced energy consumption and avoided the risk of precipitation during regeneration. According to the simulation and calculation results, the CO2 regeneration energy consumption of the novel process using H2SO4 for CO2 regeneration is 39.0% lower than that of the conventional ammonia‐based process, which shows good energy saving potential. Moreover, the novel process will be more competitive as membrane technology develops.

Publisher

Wiley

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3