The hydrologic and geochemical contributions from snow to streamflow in the McMurdo Dry Valleys of Antarctica

Author:

Wright Anna1ORCID,Gooseff Michael1ORCID,Bergstrom Anna2ORCID,Welch Kathleen1

Affiliation:

1. Institute of Arctic and Alpine Research University of Colorado Boulder Boulder Colorado USA

2. Department of Geosciences Boise State University Boise Idaho USA

Abstract

AbstractThe glacial meltwater streams in the McMurdo Dry Valleys (MDVs), Antarctica only flow during the austral summer and contain abundant algal mats which grow at the onset of flow. Their relative abundance in stream channels of this polar desert make the streams biogeochemical hot spots. The MDVs receive minimal precipitation as snow, which is redistributed by wind and deposited in distinct locations, some of which become persistent snow patches each year. Previous studies identified that MDV streamflow comes from a combination of glacier ice and snow, although snow was assumed to contribute little to the overall water budget. This study uses a combination of satellite imagery, terrain analysis, and field measurements to determine where snow patches accumulate and persist across MDV watersheds, and to quantify the potential hydrologic and biogeochemical contributions of snow patches to streams. Watersheds near the coast have the highest snow‐covered area and longest snow persistence. Many of these snow patches accumulate within the stream channels, which results in the potential to contribute to streamflow. During the summer of 2021–2022, stream channel snow patches had the potential to contribute anywhere between <1% and 90% of the total annual discharge in Lake Fryxell Basin streams, and may increase with different hydrometeorological conditions. On average the potential inputs from snow patches to streamflow was between 12% and 25% of the annual discharge during the 2021–2022 season, as determined by snow area and SWE. Snow patches in the majority of the watersheds had higher nitrogen and phosphorous concentrations than stream water, and six streams contained snow with higher N:P ratios than the average N:P in the stream water. This suggests that if such patches melt early in the summer, these nutrient and water inputs could occur at the right time and stoichiometry to be crucial for early season algal mat growth.

Funder

National Science Foundation Graduate Research Fellowship Program

National Science Foundation

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3